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Biophysical Chemistry, and Inorganic Chemistry.  Postdoctoral advisor: G. Charles 

Dismukes. 

 Assistant Professor - August 2000-May 2006, The University of New Mexico, 

Department of Chemistry, Albuquerque, NM.  Bioinorganic chemistry.  

  Assistant Professor - July 2006-2012, Brigham Young University, Department of 

Chemistry and Biochemistry, Provo, UT.  Bioinorganic chemistry 

 Associate Professor – August 2012-Present, Brigham Young University, Department of 
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SUMMARY OF RESEARCH 

Biological Research.   

Biological systems require trace amounts of transition metal ions to sustain life. Transition metal 

ions are required at the active sites of many enzymes for catalytic activity.  In fact, transition 

metals catalyze some of the most energetically demanding reactions in biology.  Unfortunately, 

these highly reactive metal ions also catalyze reactions that are dangerous for biological systems, 

especially if the metal ion is free in solution. For this purpose biology has evolved elaborate 

transition metal ion handling systems to bind and sequester transition metal ions in non-reactive 

environments to prevent these dangerous reactions from occurring.  The Watt lab focuses on how 

iron is properly moved throughout the body. 

A healthy individual possesses iron trafficking systems to absorb iron from the diet, transport 

iron in the bloodstream and deliver iron to cells that require iron.  The failure or inhibition of 

these iron trafficking systems results in free iron that is a potent catalyst to form reactive oxygen 

species or oxidative stress.  
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The Watt lab studies diseases where iron trafficking is disrupted and oxidative stress is elevated.  

Such conditions include Alzheimer’s disease, Parkinson’s disease, kidney disease, Diabetes 

along with other conditions.   

Anemia of Chronic Inflammation Caused by Hepcidin. 

Hepcidin is an iron regulatory hormone induced by inflammation that degrades the iron transport 

protein ferroportin.  Hepcidin causes a condition known as anemia of chronic inflammation.  

Ferroportin is required to transport iron into the bloodstream from the intestinal cells that absorb 

iron from the diet.  Ferroportin also exports iron from the liver, and spleen into the bloodstream 

where transferrin binds iron and delivers iron to the bone marrow for red blood cell synthesis.  

The Watt lab has identified hepcidin inhibitors that prevent hepcidin production and stabilize 

ferroportin.  Studies in rats show that iron delivery to the bone marrow is restored using these 

hepcidin inhibitors 

Inhibitors of Iron Binding Proteins 

The Watt lab has focused on metabolites that build up in diseases with oxidative stress. We 

identified metabolites that disrupt iron loading into ferritin and transferrin. In Chronic kidney 

disease, serum phosphate levels increase because the kidneys are not properly filtering phosphate 

from the bloodstream. We demonstrated that elevated phosphate inhibits iron loading into ferritin 

and transferrin by forming insoluble iron phosphate complexes. We are now focusing on other 

elevated metabolites to determine if they also disrupt normal iron loading or release of iron from 

ferritin or transferrin. 

Alzheimer’s Disease  

Iron dysregulation is intimately connected to Alzheimer’s disease (AD) but the direct 

connections are not clear.  A new hypothesis relating to homocysteine disrupting iron loading 

into ferritin might explain the elevated cytosolic iron and oxidative stress. The inability to load 

iron into ferritin results in elevated cytosolic iron which upregulates expression of the Amyloid 

Precursor Protein (APP).  Homocysteine also inhibits the phosphatase that dephosphorylates tau 

leading to elevated hyper-phosphorylated tau and tau tangles.  In collaboration with Dr. Jonathan 

Wisco in the BYU PDBio department, we are testing this hypothesis.  

Diagnostics 

For each of the situations outlined above, we are developing point of care diagnostic methods to 

evaluate known biomarkers.  The goals of the diagnostics research are two-fold.  First, we are 

modifying and developing new methods related to antibody detection methods to provide 

increased sensitivity for this type of analysis.  We also focus on particular biomarkers that give 

diagnostic information to aid clinical practitioners identify the most beneficial and effective 

treatment.  

Materials Research. 

Artificial Photosynthesis. The iron mineral core of ferritin has been characterized as ferrihydrite, 

hematite and magnetite.  Such minerals possess semi-conductor properties.  The protein shell of 

ferritin allows these semi-conductors to be soluble in aqueous solutions and provides a unique 

nano-cage for solution phase catalysis.  Ferritin is photo chemically active and can photo-oxidize 

organic molecules and store the high-energy electrons in the conduction band of the mineral, 

making a stable electron donor.  Our laboratory has used ferritin to photo-reduce metal cations to 
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form ~10 nm nanoparticles of gold, platinum, palladium and silver.  We are expanding this initial 

work to study electron donors, photo-catalysts inside ferritin and electron acceptors.  

Carboxylates, aldehydes, alcohols, amines and sulfur containing molecules act as electron donors 

for the ferritin photo-oxidation reaction (source of electrons as fuel).  In addition, we are 

examining ferritin with different mineral cores as photo-catalysts to determine if they are more 

efficient catalysts and if they utilize different wavelengths of light.  Active catalysts inside 

ferritin include metal oxides of Fe, Fe and phosphate, Mn and Co. Finally we have attached 

ferritin to electrodes and successfully used the electrode as an electron acceptor to store the 

harvested electrons.  
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